

POLITECNICO MILANO 1863

The role of financing externalities for negative emissions market design

Pietro Andreoni,

Politecnico di Milano and CMCC

Introduction

Standard economic analysis calls for full integration of CDR into a unified carbon market.

Introduction

Standard economic analysis calls for full integration of CDR into a unified carbon market.

Several challenges to this notion (Edenhofer et al. 2024):
 Political economy (MacLaren et al. 2019)
 Inter-regional leakage (Franks et al. 2023)
 Non permanance of removal (Kalkuhl et al. 2022)
 Environmental externalities (Fuss et al. 2018)

Motivation

➤Andreoni et al. 2024 finds an additional channel that might justify market separation.

Motivation

>Andreoni et al. 2024 finds an additional channel that might justify market separation.

≻Rents for CDR can emerge in a unified carbon market:

- ➢ Frictions (quasi-rents)
- ≻Convexity in the removal cost curves
- ≻Heterogeneity of CDR options

Motivation

Andreoni et al. 2024 finds an additional channel that might justify market separation.
 Rents for CDR can emerge in a unified carbon market.

➢Rents cause inequality (Stiglitz, 2015) and erode the carbon market revenues base available for redistribution/green spending/fiscal reform (Van der Ploeg, 2023).

Research questions

RQ: Does these distributional concerns justify separation of markets (prices) for removal and emissions?

Research questions

RQ: Does these distributional concerns justify separation of markets (prices) for removal and emissions?

Yes, under (relevant) second- or third- best conditions. Optimal price for CDR is reduced (by 30/50% in a EU calibrated model) relative to abatement if:

(a) the *double dividend* hypothesis applies

OR

(a) the social planner is inequality averse.

➤Closed polluting economy (calibrated on the EU) with one emission and two removal sectors subject to a cumulative emission constraint compatible with net-zero by mid century.

 $E_b(t) = ci(t) * Y(t)$

$$E(t) = E_b(t) - \sum_{s} E_{ar}(t,s)$$

 $\forall t^* s.t. t^* < 2150$

 $\sum_{t=2020} E(t) < E_{max}$

Convex, dynamic cost curves for emission reductions and Carbon Dioxide Removal (DAC and BECCS).

$$\begin{split} MC(t,s) &= \sum_{i=0}^{4} a_i(t,s) * E_{ar}(t,s)^i \\ C(t,s) &= \int_0^{E_{ar}} MC(t,s) \\ a_i(t,s) &= \max\left(a_i(t_0,s) * \left(\frac{K_{rd}(t,s)}{K_{rd}(t_0,s)}\right)^{-\lambda_i(s)}, a_{i,min}\right) \\ K_{rd}(t,s) &= \sum_{t^*=2020}^{t} \max(E_{ar}(t^*,s) - E_{ar}(t^*-1,s) * (1-\partial), 0) \end{split}$$

 \succ Convex, dynamic cost curves for emission reductions and CDR.

EMISSIONS - BECCS - DACCS - ENERGY AND INDUSTRY YEAR 2025 - 2030 - 2050 - 2070

11

➢A governement redistributes the residual revenues from the carbon market and tax revenues, net of CDR payments

$$G(t) = P(t,e) * E_{res}(t) + T(t) - P(t,r) * \sum_{r} E_{ar}(t,s) - \sum_{s} S(t,s) * E_{ar}(t,s)$$
REVENUES FROM REVENUES FROM
EMISSIONS TAX VARIATION

 $P(t,m) = \min_{s \text{ if } s \in m} (MC(t,s))$

$$S(t,s) = \max_{if \ s \in m} (MC(t,s) - P(t,m), 0)$$

Decile-based microsimulation model, costs and revenues distributed to different households via elasticities as in Dennig et al. 2015, Andreoni et al. 2024.

 $Y(t,d) = Y_b(t) * q_b(t,d) - C(t,e) * q_b(t,d) - P(t,e) * E_{res}(t) * w_{\xi_e}(t,d) - T(t) * w_{\xi_t}(t,d) * MCPF_t + \sum_r \Pi(t,r) * w_{\xi_r}(t,d) + G(t) * w_{\xi_g}(t,d)$ $* w_{\xi_g}(t,d)$ $\cdot CDR PROFITS GO TO THE RICH (\xi_r = 1.8)$ $\cdot INCOME TAX IS PROGRESSIVE (\xi_t = 1.4) AND DISTORTIVE (MCPF_t > 1)$ $\cdot CARBON TAX ON EMISSIONS IS REGRESSIVE (\xi_e = 0.8)$

• GOVERNMENT REDISTRIBUTION NEUTRAL OR EPC ($\xi_g = 0,1$)

EAERE 2025, BERGEN

Climate and fiscal policy thus affect the income distribution and the aggregate output. An inequality averse impact function captures the resulting equity-efficiency trade-off

$$Y_b(t) - Y(t) = \sum_{s} C(t, s) + T(t) * (MCPF_t - 1)$$

$$W = \sum_{t} \frac{1}{\delta^{t-t_0}} * \frac{\left(\sum_{d} \left(\frac{Y(t,d)}{pop(t,d)}\right)^{1-\varrho}\right)^{\frac{1-\eta}{1-\varrho}}}{1-\eta}$$

Results

- ➢Numerical simulation with model calibrated on the European Union.
- Three policy settings:
 First best, «unlimited» non distortive and progressive taxation. Textbook solution with uniform price for abatement and removal.

Results, second best

≻Numerical simulation with model calibrated on the European Union

≻Three policy settings:

• First best, non distortive and progressive taxation. Single market.

 Second best, progressive but distortive taxation reform is available to the social planner. Double dividend hypothesis applies.

Results, second best

- «double dividend» opportunity arises to lower distortive taxes with carbon tax revenues.
- > Price of CDR market is optimally halved.

EAERE 2025, BERGEN

Results, second best

6/19/2025

- «double dividend» opportunity arises to lower distortive taxes with carbon tax revenues.
- > Price of CDR market is optimally halved.
- This dynamic is driven from cost-efficiency and largely indipendent from inequality aversion.

Results, third best

≻Numerical simulation with model calibrated on the European Union.

≻Three policy settings:

- First best, non distortive and progressive taxation. Single market.
- Second best, distortive taxation. Double dividend.
- Third best, no fiscal policy available (e.g. climate and fiscal policy are not designed by the same authority). Same fiscal setting as Andreoni et al. 2024

Results, third best

6/19/2025

With no inequality aversion, the inequality increase due to financing CDR is not relevant to the social planner. Cost-efficient solution is mantained.

Results, third best

- With no inequality aversion, the inequality increase due to financing CDR is not relevant to the social planner. Cost-efficient solution is mantained.
- If the planner is inequality averse, price of CDR is reduced to reduce rents to CDR and inequality.

Conclusions

Significant rents in a net-zero cabron market are a possibility

≻Rents might justify market separation to control CDR prices by up to 50%.

≻Rents are higher the lower the availability of CDR.

➢More research is needed to study the «shape» of the cost curves for removal.

Thank you!

This work have received funding under the Horizon projects UPTAKE and ELEVATE.

Chapter I: macc curves

Chapter II: methods and scenarios

Chapter II: methods and scenarios

EMISSIONS - BECCS - DACCS - ENERGY AND INDUSTRY YEAR - 2025 - 2030 - 2050 - 2070

Chapter II: methods and scenarios

Chapter II: results

Inequality aversion high low zero Market Emissions Removal

Inequality aversion 🗢 high 🔷 low 🧼 zero 🛛 Market 🗕 Emissions 🗕 Removal

Chapter II: results

